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Efficient generation of large random networks
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Random networks are frequently generated, for example, to investigate the effects of model parameters on
network properties or to test the performance of algorithms. Recent interest in the statistics of large-scale
networks sparked a growing demand for network generators that can generate large numbers of large networks
quickly. We here present simple and efficient algorithms to randomly generate networks according to the most
commonly used models. Their running time and space requirement is linear in the size of the network gener-
ated, and they are easily implemented.
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[. INTRODUCTION given number of vertices. The model most commonly used
for this purpose was introduced by Gilbég]. In Gilbert’s
Recent studies of complex systems such as the Internefjodel, G(n,p), the [n(n—1)]/2 potential edges of a simple
biological networks, river basins, or social networks, haveundirected graphG(n,p) e G(n,p) with n vertices are in-
significantly increased the interest in modeling classes otluded independently with probability<Op<1. This edge
graphs. While random graphs have been studied for a longrobability is usually chosen dependent on the number of
time, the standard models appear to be inappropriate becaugertices, i.e.p=p(n).
they do not share the characteristics observed for those sys- Note that the number of edges of a graph created accord-
tems. A plethora of new models is therefore being proposedng to the G(n,p) model is not known in advance. The
but many of them are variations of the small-world mddé!  ¢|osely related modeg(n,m), in which all simple undirected

or the preferential attachment model. nonisomorphic graphs witi vertices andexactly O<m

For empirical evaluation of models and algorithms, it is _ : :
_ . . <[n(n-1)]/2 edges are equiprobable, was introduced b
important to be able to quickly generate graphs according t rE:b(s anzj] Rény%(i] A varigntpmodel G (n.m), in which y

these models. To our surprise, we have found that the algo- ) i )
rithms used for these generators in software SucBrAEe parallel edges are allowed, was first studied by Austial.
[15], GT-IT™M [16], JUNG [17], or LEDA [3] are rather ineffi- [7]. _ o
cient. Note that superlinear algorithms are sometimes toler- Yet another variant are random graphs with given degree
able in the analysis of networks with tens of thousands of€quence. For a recent discussion of generators for this
nodes, but they are clearly unacceptable for generating largg@odel we refer the interested reader to a recent article in this
numbers of graphs of that size. journal[8].

We show here that standard random graphs, small worlds,
and preferential attachment graphs can be generated effi-
c_iently by presenting generators that are asymptot_ically op- A. G(n,p)
timal both in terms of running time and space requirements,

parsimonious in their use of a random number generator, .
simple to implement, and easily adaptable for model varia- Common generators for graphs in &, p) model draw,

tions. A specific set of implementations is available in Pajelgnd_ependently for each po_tent|al edge, a r_1umber[0,1)
[4] uniformly at random, and insert the edgeri p. Clearly,

both the running time and the number of random experi-
ments are in®(n?), independent of the number of edges
actually generated. This method is hence not suitable to gen-
erate large sparse graphs.

The number of edges of a gragB(n,p) is binomially
Qistributed with mearp(g):p[n(n—l)]lz. To generate sparse
graphs, the edge probability is chosen such fita) € o(1)
and therefore most trials of the above generator will be un-
successful. We hence use tpeometric methodf [9] to skip

II. RANDOM GRAPHS

The now classic models of random graphs were defined t
study properties of “typical” graphs among those with a

*Email address: vladimir.batagelj@uni-lj.si over potential edges that are not created. Note that, at any
TCorresponding author. Email address: ulrik.brandes@unigiven time during the iteration, the probability of generating
konstanz.de the next edge only aftér trials is
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(1-p)*p, The algorithm is easily modified to generate directed, di-
rected acyclic, bipartite, or any other class of graphs for
i.e., waiting times are geometrically distributed. In the fol- which the set of candidate edges can be indexed so that any
lowing, let g=1-p. To sample waiting times, each positive edge is obtained from its index in constant time.
integerk is assigned an intervd| C[0,1) of length g<*p

and we have B.g(n,m)
In principle, the geometric method can be used to gener-
* * 1 ate graphs according t6(n,m) as well. However, in this
> q“'p= DE q“= pr =1 model, skipping probabilities are not independent of the cur-
k=1 k=0 q rent state of the algorithm. Assume that we have already

) ) ) ~ considered—1 candidate edges, and seleckddr inclusion
If the intervalsly, 5, 13,... areconsecutive starting at 0, in- jn the graph. Then, the probability of skipping the néxt

tervall, ends at -1 candidates is
K K t+k-1
- 1 _ m-| m-1
2q7p=pXq=p - =1-d Ht o n '
i=1 i=0 q 1= 5 —-i+1 —t+k

so that waiting times can be sampled by selecting the smal

LI"hou h fast methods to sampitefrom this distribution are
estk for which I, ends after a randomly choser [0, 1). J o

available[10,11], they are rather complicated and require
r more than constant time per edge.
We next describe two different methods for sampling
from G(n,m) that are both simple and efficient. While one is
| | | | | more suitable for sparse graphs, the other should be used

| | | ] when denser graphs need to be generated.
A straightforward approach for sparse graphs is to itera-

0 p qp qu T 1 tively pick a random candidate edge and create it or retry if it
has been created in a previous step. Using an efficient hash-
Note that ing scheme, the test whether an edge already exists can be
carried out in constant expected time. See Alg. 2 for the
’ log(1-r) pseudocode.
r<l-g¢ - k> I— ALG. 2: G(n,m) in linear expected time
094 Input: number of verticesn

number of edges € m=(})

so that we choosk=1+log(1-r)/logq]. output: G=({0, ... n-1},E) € G(n,m)

ALG. 1: G(n,p)

Input: number of vertices, edge probability 8<p<1 E;r_iqlo m-1 do
Output: G=({0, ... n-1},E) e G(n,p) repea't“"
E:f wWe -1 drawr {0, ... (3)-1} uniformly at random
v until e ¢ E
while v<n do Ec EUle)
(s

drawr €[0,1) uniformly at random

w«—w+1+log(1-r)/log(1-p)]

while w=v and v<n do
W—W-v;v—v+l

if v<nthen E<EU{v,w}

Pseudocode for the algorithm is given in Alg. 1. Note that
the set of candidate edges is enumerated in lexicographic n
order, which corresponds to a row-wise traversal of the lower <2>
half of the adjacency matrix. An interesting interpretation is >
that of an evolving graph, since the traversal of each row i=1 (n)
corresponds to the creation of a new vertex which is assigned 2
edges to already existing vertices. (n)

The running time of this method is probabilistic. After
choosingi edges, the probability of sampling a new edge in
the next step i$(5)-il/(}), so that the expected number of
trials until this actually happens §)/[(5)-il. The expected
total running time is therefore

), Gfm
(2) 27027

Observe that all but the last execution of the outer loop
yields an edge, and that the total number of executions of the cO ( )Io
inner loop is equal to the number of vertices, so that Alg. 1 2 9 n '
generates a random graph in tGén,p) model in O(n+m) ( )‘ m+1
time (wherem is the number of edges generatedhich is
optimal. which is O(m) for m=3(}). Since this bound gives
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30 Meplacement = ' T E ALG. 3: G(n,m) in linear worst-case time

, | Tetrial v Pl Input: number of vertices
0 o number of edges € m= ()
k) gy 2
§ 20 | = ar : Output: G=({0, ... n=-1},E) e G(n,m)
o E—0
g 2 for i=0,... m-1do
2 10l drawr e {i, ... (3)-1} uniformly at random
E )
D if e ¢ E then

ST E—EU{e}

0 , , , . elseE—EU {ereplacéer]}

0 2x10°  4x10°  6x10°  8x10°  1x10° if g ¢ E then
size of graph (vertices and edges) replacéer]<—i

FIG. 1. The simple method is slightly faster in practice. elsereplacge; ] —replacée]

O(mlog m) expected running time fcm:(g), we rather gen-

erate a complete graph Wi‘@) edges and randomly delete lll. SMALL WORLDS
(5)-m+1 of them whenm> (). We thus have linear ex-
pected running time in all cases. Watts and Strogatf1] introduced a popular model for

An alternative eliminating the uncertainty in the numberSparse undirected graphs callgahall worlds The model is

of trials is a virtual Fisher-Y_ates shuffle. In a standard F_iSher'designed to exhibit properties found in empirical graphs that
Yates shuffle[12], all candidate elements are stored in an

Aft | tis picked at d i Cﬁre unlikely to be present in random graphs with the same
array. Alter an element 1S picked at random, 1 IS SWappeq, .\har of vertices and edges. The two defining properties
with the first element, and the interval of elements consid-

ered is shortened by one, so that the first one cannot ba o strong local clustering as measured bydiustering co-

picked again. However, when generating sparse graphs Wit%fficient i.e., the average density of the neighborhood of ver-
me 0((n)) we cannot a,ﬁord to have an array of s(iz‘é tices, and short average distances between pairs of vertices,
2/ ) . . . .
To implement a virtual shuffle, we number all edges fromsometlmes_cglledhgractensnc path Ierjgth .
1 (), and when an edge is created in tite step, we The basic idea is to start from a fixed graph with local
3 a9\ /)y ’

associate the index of its swapping counterpart with theclustering, but large characteristic path length, and to ran-

edge’s entry in the hashtable storing the set of created edge@f’mly rewire a fraction OT the gdges to SErve as shortcuts.
If the edge is later picked again, we create its replacemerIOre Precisely, we start with a ring ofvertices and connect
instead and assign a new replacement edge. Note that tf&ch Of them with its @ nearest neighbors, where<ud
replacement itself is already outside of the random choicés ("~1)/2 is an integer constant. Graphs in this family have
interval and will therefore not be picked again. See Alg. 3 fora relatively high clustering coefficient close io but also a

e={v,w} withv=1+

the pseudocode. high characteristic path length of abaut2r.
Note that the set of candidate edges of a simple undirected A straightforward generator creates, in linear time,dtre
graph with vertices{0, ... n—1} is easily numbered using power of ann-cycle, and decides for each of tinel edges

algorithm faces the same two obstacles discussed in the pre-

1 1 .. vious section: a large number of unsuccessful random trials
T2 + 4 +2 and the creation of loops or parallel eddes the need for

the first problem does not result in an increased asymptotic

=i v(v-1) running time, and the second problem is less severe, also,

since the expected few loops and parallel edges have an in-

for i=0,... ,(2)—1, i.e.,i=[v(v-1)]/2+w for Osw<v<n Nevertheless, for demonstration purposes we combine the

-1. techniques introduced in the previous section to eliminate

An experimental evaluation showed, however, that forboth problems. The pseudocode for a generator that gener-

retrials is slightly better in practice than the replacementuting some edges of the starting graph with random edges is

method. In Fig. 1, running times are given for the generatiorgiven in Alg. 4; other variants can be obtained from straight-

of graphs with 1000—-20 000 vertices and densities varyindorward modifications.

the bijection whether to replace it with a random edge or not. In fact, this
retrialg. Since we probe only edges that have been created,
significant effect on the properties of the graphs generated.

likely choices of parameters, the simple method based oates small worlds without loops or multiple edges by substi-

from 0% to 25%. The experiments have been performed on a An interesting option for small worlds with only a little

standard laptop computer. randomness is the implicit representation of nonrandom
Again, the methods easily generalize to other classes afdges. Note that two vertices are adjacent in the augmented
graphs such as directed or bipartite graphs. cycle,
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ALG. 4: small worlds We here implement the precise model of Bollolkeisal.
Input: number of vertices [14] in which the ambiguity of how to select a set @f1
degree parameterld<|n-1/2) neighbors is resolved in the following way. Assurde 1,
replacement probability € p<1 then theith vertex is attached to thgh vertex, j<i, with
Output: small worldG=({0, ... n-1},E) probability d(j)/[m(i)+1], if j<i, and 1[m(i)+1], if i=],
E—0 where d(j) is the current degree of vertek and m(i)
drawr €[0,1) uniformly at random :E};})d(j) is twice the number of edges already created. Note
kellog(1-r)/log(1-p)|; m«0 that this process generates a forest. Hor1, the graph
for v=0,... h-1do evolves as ifd=1 until nd vertices have been created, and
fori=1,...ddo then intervals ofd consecutive vertices are contracted into
if k>0 then one. Clearly, this process may yield loops and multiple
j<v(-1)/2+(v+i modn) edges.
E—EU{g} Current generators such &®RITE and JUNG recompute
ke—k-1; m«—m+1 prefix sums of degrees to sample neighbors. This is highly
if e,¢ E then inefficient and leads to implementations with at least qua-
replacge; ]« m dratic running time. Observe that in a list of all edges created
else thus far, the number of occurrences of a vertex is equal to its
replacge;] < replacéey,] degree, so that it can be used as a pool to sample from the
else degree-skewed distribution in constant time. In Alg. 5, such
drawr €[0,1) uniformly at random an edge list is represented by arrBy in which pairs of
k—log(1-r)/log(1-p)] vertices represent the edges. Both running time and space
for i=m+1,... nd do requirement ar@®(n+m) for this algorithm, i.e., linear in the
drawr e i, ... ,(5)} uniformly at random size of the graph generated.
if then ALG. 5: preferential attachment
E—EU{e} Input: ngmber of vertices
elseE— EU{€epiacte ]} minimum degreed =1
. " Output: scale-free multigraph
if & ¢ E then B
replacée ] —i G=({0,... n-1},E)

M: array of length &d
for v=0,...n-1do
for i=0,...,d-1do
M[2(vd+i)]+v
drawr €40, ...,2vd+i)} uniformly at random
M[2(vd+i)+ 1]« M[r]

elsereplacée, |+ replacée |

if and only if their indices differ by at mosi. Therefore,
we do not need to store these edges, but only exceptions
caused by random replacement. The adjacency list of a ver-
texv in a space-efficient small-world data structure thus con-
sists of two parts: an alternating sequence of interval lengths
[the number of consecutive neighbdreon-neighborsin v )
~d,...v=1 (v+1,... p+d), all modulon] and the list of ~ fOr 1=0,....nd=1do
random edges incident . Note that the space needed to E—EU{M[2I],M[2i+1]}

store all edges is proportional to the number of random edges A9@in, @ number of variants is obtained from straightfor-
in the graph. ward modification. Note that we can initializd with the

edges of any seed gra@y, and thatk-partite graphs can be

generated in the same way by selecting from different pools.

For directed graphs, the neighbor-selection probability can

IV. PREFERENTIAL ATTACHMENT be decomposed into the weighted sum of in-, out-, and total

degree. In the implementation, we let a three-sided biased

In random graphs according @(n,p), G(n,m), or the dice decide which term is relevant and then sample from
small-world model, the degree distribution is sharply con-0dd, even, or all positions iM. If the number of edges to

centrated around its mean. In many empirical networks@dd for & new vertex is not fixed, the geometric method of

however, it roughly obeys a power law, i.e., the number ofSEC. I!, e.g., can be used to sample.nelg'hbors from the preflx
vertices with degreel is proportional tod~” for some con- of M filled up to now. An example with bipartite preferential

E—

stanty=1[13]. attachment is_ giv_en in Alg. 6._

Barabasi and Albeff?] describe a process pfeferential ALG. 6: bipartite preferential attachment
attachmentthat generates graphs with this property. The [NPut: number of vertices in each set
graph is created one vertex at a time, and each newly created minimum degreed=1 _
vertex is attached to a fixed numberof already existing Output: bipartite scale-free multigrapiG=({0, ... n
vertices. The probability of selecting a specific neighbor is-1}U{n, ...,2n—1} E)
proportional to the current degree of that vertex. M4, M,: arrays of length 2d

036113-4



EFFICIENT GENERATION OF LARGE RANDOM NETWORKS PHYSICAL REVIEW E1, 036113(2005

for v=0,...n—-1do for i=0,...,nd-1do
for i=0,...d-1do E—EU{M[2i],M[2i+1]}U{M,[2i],M[2i +1]}
M4[2(vd+i)]«—v
Mo[2(vd+i)]«n+v

drawr €{0, ...,Qvd+i)} uniformly at random ACKNOWLEDGMENT
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