
Efficient generation of large random networks

Vladimir Batagelj*
Department of Mathematics, University of Ljubljana, Slovenia

Ulrik Brandes†

Department of Computer & Information Science, University of Konstanz, Germany
sReceived 14 September 2004; published 11 March 2005d

Random networks are frequently generated, for example, to investigate the effects of model parameters on
network properties or to test the performance of algorithms. Recent interest in the statistics of large-scale
networks sparked a growing demand for network generators that can generate large numbers of large networks
quickly. We here present simple and efficient algorithms to randomly generate networks according to the most
commonly used models. Their running time and space requirement is linear in the size of the network gener-
ated, and they are easily implemented.

DOI: 10.1103/PhysRevE.71.036113 PACS numberssd: 89.75.Fb, 89.75.Hc, 95.75.Pq

I. INTRODUCTION

Recent studies of complex systems such as the Internet,
biological networks, river basins, or social networks, have
significantly increased the interest in modeling classes of
graphs. While random graphs have been studied for a long
time, the standard models appear to be inappropriate because
they do not share the characteristics observed for those sys-
tems. A plethora of new models is therefore being proposed,
but many of them are variations of the small-world modelf1g
or the preferential attachment modelf2g.

For empirical evaluation of models and algorithms, it is
important to be able to quickly generate graphs according to
these models. To our surprise, we have found that the algo-
rithms used for these generators in software such asBRITE

f15g, GT-ITM f16g, JUNG f17g, or LEDA f3g are rather ineffi-
cient. Note that superlinear algorithms are sometimes toler-
able in the analysis of networks with tens of thousands of
nodes, but they are clearly unacceptable for generating large
numbers of graphs of that size.

We show here that standard random graphs, small worlds,
and preferential attachment graphs can be generated effi-
ciently by presenting generators that are asymptotically op-
timal both in terms of running time and space requirements,
parsimonious in their use of a random number generator,
simple to implement, and easily adaptable for model varia-
tions. A specific set of implementations is available in Pajek
f4g.

II. RANDOM GRAPHS

The now classic models of random graphs were defined to
study properties of “typical” graphs among those with a

given number of vertices. The model most commonly used
for this purpose was introduced by Gilbertf5g. In Gilbert’s
model,Gsn,pd, the fnsn−1dg /2 potential edges of a simple
undirected graphGsn,pdPGsn,pd with n vertices are in-
cluded independently with probability 0,p,1. This edge
probability is usually chosen dependent on the number of
vertices, i.e.,p=psnd.

Note that the number of edges of a graph created accord-
ing to the Gsn,pd model is not known in advance. The
closely related modelGsn,md, in which all simple undirected
nonisomorphic graphs withn vertices andexactly 0øm
ø fnsn−1dg /2 edges are equiprobable, was introduced by
Erdős and Rényif6g. A variant model,G*sn,md, in which
parallel edges are allowed, was first studied by Austinet al.
f7g.

Yet another variant are random graphs with given degree
sequence. For a recent discussion of generators for this
model we refer the interested reader to a recent article in this
journal f8g.

A. G„n ,p…

Common generators for graphs in theGsn,pd model draw,
independently for each potential edge, a numberr P f0,1d
uniformly at random, and insert the edge ifr ,p. Clearly,
both the running time and the number of random experi-
ments are inQsn2d, independent of the number of edges
actually generated. This method is hence not suitable to gen-
erate large sparse graphs.

The number of edges of a graphGsn,pd is binomially
distributed with meanps n

2
d=pfnsn−1dg /2. To generate sparse

graphs, the edge probability is chosen such thatpsndPos1d
and therefore most trials of the above generator will be un-
successful. We hence use thegeometric methodof f9g to skip
over potential edges that are not created. Note that, at any
given time during the iteration, the probability of generating
the next edge only afterk trials is

*Email address: vladimir.batagelj@uni-lj.si
†Corresponding author. Email address: ulrik.brandes@uni-

konstanz.de

PHYSICAL REVIEW E 71, 036113s2005d

1539-3755/2005/71s3d/036113s5d/$23.00 ©2005 The American Physical Society036113-1



s1 − pdk−1p,

i.e., waiting times are geometrically distributed. In the fol-
lowing, let q=1−p. To sample waiting times, each positive
integer k is assigned an intervalIk# f0,1d of length qk−1p
and we have

o
k=1

`

qk−1p = po
k=0

`

qk = p
1

1 − q
= 1.

If the intervalsI1,I2,I3, . . . areconsecutive starting at 0, in-
terval Ik ends at

o
i=1

k

qi−1p = po
i=0

k

qi = p
1 − qk

1 − q
= 1 −qk,

so that waiting times can be sampled by selecting the small-
estk for which Ik ends after a randomly chosenr P f0,1d.

Note that

r , 1 − qk ⇔ k .
logs1 − rd

log q
,

so that we choosek=1+blogs1−rd / log qc.
ALG. 1: Gsn,pd
Input : number of verticesn, edge probability 0,p,1
Output : G=sh0, . . . ,n−1j ,EdPGsn,pd
E←0”
v←1; w←−1
while v,n do

draw r P f0,1d uniformly at random
w←w+1+blogs1−rd / logs1−pdc
while wùv and v,n do

w←w−v ;v←v+1
if v,n then E←Eø hv ,wj

Pseudocode for the algorithm is given in Alg. 1. Note that
the set of candidate edges is enumerated in lexicographic
order, which corresponds to a row-wise traversal of the lower
half of the adjacency matrix. An interesting interpretation is
that of an evolving graph, since the traversal of each row
corresponds to the creation of a new vertex which is assigned
edges to already existing vertices.

Observe that all but the last execution of the outer loop
yields an edge, and that the total number of executions of the
inner loop is equal to the number of vertices, so that Alg. 1
generates a random graph in theGsn,pd model in Osn+md
time swherem is the number of edges generatedd, which is
optimal.

The algorithm is easily modified to generate directed, di-
rected acyclic, bipartite, or any other class of graphs for
which the set of candidate edges can be indexed so that any
edge is obtained from its index in constant time.

B. G„n ,m…

In principle, the geometric method can be used to gener-
ate graphs according toGsn,md as well. However, in this
model, skipping probabilities are not independent of the cur-
rent state of the algorithm. Assume that we have already
consideredt−1 candidate edges, and selectedl for inclusion
in the graph. Then, the probability of skipping the nextk
−1 candidates is

p
i=t

t+k−1

11 −
m− l

Sn

2
D − i + 12 m− l

Sn

2
D − t + k

.

Though fast methods to samplek from this distribution are
available f10,11g, they are rather complicated and require
more than constant time per edge.

We next describe two different methods for sampling
from Gsn,md that are both simple and efficient. While one is
more suitable for sparse graphs, the other should be used
when denser graphs need to be generated.

A straightforward approach for sparse graphs is to itera-
tively pick a random candidate edge and create it or retry if it
has been created in a previous step. Using an efficient hash-
ing scheme, the test whether an edge already exists can be
carried out in constant expected time. See Alg. 2 for the
pseudocode.

ALG. 2: Gsn,md in linear expected time
Input : number of verticesn

number of edges 0ømø s n
2

d
Output : G=sh0, . . . ,n−1j ,EdPGsn,md
E←0”
for i =0, . . . ,m−1 do

repeat
draw r P h0, . . . ,s n

2
d−1j uniformly at random

until er ¹E
E←Eø herj

The running time of this method is probabilistic. After
choosingi edges, the probability of sampling a new edge in
the next step isfs n

2
d− ig / s n

2
d, so that the expected number of

trials until this actually happens iss n
2

d / fs n
2

d− ig. The expected
total running time is therefore

o
i=1

m Sn

2
D

Sn

2
D − i

= Sn

2
D1o

i=1

Sn

2
D

1

i
− o

i=1

Sn

2
D−m

1

i 2
P Q_Sn

2
Dlog

Sn

2
D

Sn

2
D − m+ 1+ ,

which is Osmd for mø
1
2

s n
2

d. Since this bound gives

V. BATAGELJ AND U. BRANDES PHYSICAL REVIEW E71, 036113s2005d

036113-2



Osm log md expected running time form= s n
2

d, we rather gen-
erate a complete graph withs n

2
d edges and randomly delete

s n
2

d−m+1 of them whenm.
1
2

s n
2

d. We thus have linear ex-
pected running time in all cases.

An alternative eliminating the uncertainty in the number
of trials is a virtual Fisher-Yates shuffle. In a standard Fisher-
Yates shufflef12g, all candidate elements are stored in an
array. After an element is picked at random, it is swapped
with the first element, and the interval of elements consid-
ered is shortened by one, so that the first one cannot be
picked again. However, when generating sparse graphs with
mPo(s n

2
d), we cannot afford to have an array of sizes n

2
d.

To implement a virtual shuffle, we number all edges from
1, . . . ,s n

2
d, and when an edge is created in theith step, we

associate the index of its swapping counterpart with the
edge’s entry in the hashtable storing the set of created edges.
If the edge is later picked again, we create its replacement
instead and assign a new replacement edge. Note that the
replacement itself is already outside of the random choice
interval and will therefore not be picked again. See Alg. 3 for
the pseudocode.

Note that the set of candidate edges of a simple undirected
graph with verticesh0, . . . ,n−1j is easily numbered using
the bijection

ei = hv,wj with v = 1 + b− 1

2
+Î1

4
+ 2i c

w = i −
vsv − 1d

2

for i =0, . . . ,s n
2

d−1, i.e., i =fvsv−1dg /2+w for 0øw,vøn
−1.

An experimental evaluation showed, however, that for
likely choices of parameters, the simple method based on
retrials is slightly better in practice than the replacement
method. In Fig. 1, running times are given for the generation
of graphs with 1000–20 000 vertices and densities varying
from 0% to 25%. The experiments have been performed on a
standard laptop computer.

Again, the methods easily generalize to other classes of
graphs such as directed or bipartite graphs.

ALG. 3: Gsn,md in linear worst-case time
Input : number of verticesn

number of edges 0ømø s n
2

d
Output : G=sh0, . . . ,n−1j ,EdPGsn,md
E←0”
for i =0, . . . ,m−1 do

draw r P hi , . . . ,s n
2

d−1j uniformly at random
if er ¹E then

E←Eø herj
elseE←Eø hereplaceferg

j
if ei ¹E then

replaceferg← i
elsereplaceferg← replacefeig

III. SMALL WORLDS

Watts and Strogatzf1g introduced a popular model for
sparse undirected graphs calledsmall worlds. The model is
designed to exhibit properties found in empirical graphs that
are unlikely to be present in random graphs with the same
number of vertices and edges. The two defining properties
are strong local clustering as measured by theclustering co-
efficient, i.e., the average density of the neighborhood of ver-
tices, and short average distances between pairs of vertices,
sometimes calledcharacteristic path length.

The basic idea is to start from a fixed graph with local
clustering, but large characteristic path length, and to ran-
domly rewire a fraction of the edges to serve as shortcuts.
More precisely, we start with a ring ofn vertices and connect
each of them with its 2d nearest neighbors, where 1ød
ø sn−1d /2 is an integer constant. Graphs in this family have
a relatively high clustering coefficient close to3

4, but also a
high characteristic path length of aboutn/2r.

A straightforward generator creates, in linear time, thedth
power of ann-cycle, and decides for each of thend edges
whether to replace it with a random edge or not. In fact, this
algorithm faces the same two obstacles discussed in the pre-
vious section: a large number of unsuccessful random trials
and the creation of loops or parallel edgessor the need for
retrialsd. Since we probe only edges that have been created,
the first problem does not result in an increased asymptotic
running time, and the second problem is less severe, also,
since the expected few loops and parallel edges have an in-
significant effect on the properties of the graphs generated.

Nevertheless, for demonstration purposes we combine the
techniques introduced in the previous section to eliminate
both problems. The pseudocode for a generator that gener-
ates small worlds without loops or multiple edges by substi-
tuting some edges of the starting graph with random edges is
given in Alg. 4; other variants can be obtained from straight-
forward modifications.

An interesting option for small worlds with only a little
randomness is the implicit representation of nonrandom
edges. Note that two vertices are adjacent in the augmented
cycle,

FIG. 1. The simple method is slightly faster in practice.

EFFICIENT GENERATION OF LARGE RANDOM NETWORKS PHYSICAL REVIEW E71, 036113s2005d

036113-3



ALG. 4: small worlds
Input: number of verticesn

degree parameter 1ødø bn−1/2c
replacement probability 0øp,1

Output: small worldG=sh0, . . . ,n−1j ,Ed
E←0”
draw r P f0,1d uniformly at random
k← blogs1−rd / logs1−pdc; m←0
for v=0, . . . ,n−1 do

for i =1, . . . ,d do
if k.0 then

j ←vsv−1d /2+sv+ i mod nd
E←Eø hejj
k←k−1; m←m+1
if em¹E then

replacefejg←m
else

replacefejg← replacefemg
else

draw r P f0,1d uniformly at random
k← blogs1−rd / logs1−pdc

for i =m+1, . . . ,nd do
draw r P hi , . . . ,s n

2
dj uniformly at random

if then
E←Eø herj

elseE←Eø hereplaceferg
j

if ei ¹E then
replaceferg← i

elsereplaceferg← replacefeig
if and only if their indices differ by at mostd. Therefore,

we do not need to store these edges, but only exceptions
caused by random replacement. The adjacency list of a ver-
tex v in a space-efficient small-world data structure thus con-
sists of two parts: an alternating sequence of interval lengths
fthe number of consecutive neighborssnon-neighborsd in v
−d, . . . ,v−1 sv+1, . . . ,v+dd, all modulo ng and the list of
random edges incident tov. Note that the space needed to
store all edges is proportional to the number of random edges
in the graph.

IV. PREFERENTIAL ATTACHMENT

In random graphs according toGsn,pd, Gsn,md, or the
small-world model, the degree distribution is sharply con-
centrated around its mean. In many empirical networks,
however, it roughly obeys a power law, i.e., the number of
vertices with degreed is proportional tod−g for some con-
stantgù1 f13g.

Barabási and Albertf2g describe a process ofpreferential
attachmentthat generates graphs with this property. The
graph is created one vertex at a time, and each newly created
vertex is attached to a fixed numberd of already existing
vertices. The probability of selecting a specific neighbor is
proportional to the current degree of that vertex.

We here implement the precise model of Bollobáset al.
f14g in which the ambiguity of how to select a set ofd.1
neighbors is resolved in the following way. Assumed=1,
then theith vertex is attached to thej th vertex, j ø i, with
probability ds jd / fmsid+1g, if j , i, and 1/fmsid+1g, if i = j ,
where ds jd is the current degree of vertexj and msid
=o j=0

i−1ds jd is twice the number of edges already created. Note
that this process generates a forest. Ford.1, the graph
evolves as ifd=1 until nd vertices have been created, and
then intervals ofd consecutive vertices are contracted into
one. Clearly, this process may yield loops and multiple
edges.

Current generators such asBRITE and JUNG recompute
prefix sums of degrees to sample neighbors. This is highly
inefficient and leads to implementations with at least qua-
dratic running time. Observe that in a list of all edges created
thus far, the number of occurrences of a vertex is equal to its
degree, so that it can be used as a pool to sample from the
degree-skewed distribution in constant time. In Alg. 5, such
an edge list is represented by arrayM in which pairs of
vertices represent the edges. Both running time and space
requirement areOsn+md for this algorithm, i.e., linear in the
size of the graph generated.

ALG. 5: preferential attachment
Input: number of verticesn

minimum degreedù1
Output: scale-free multigraph
G=sh0, . . . ,n−1j ,Ed
M: array of length 2nd
for v=0, . . . ,n−1 do

for i =0, . . . ,d−1 do
Mf2svd+ idg←v
draw r P h0, . . . ,2svd+ idj uniformly at random
Mf2svd+ id+1g←Mfrg

E←0”
for i =0, . . . ,nd−1 do

E←Eø hMf2ig ,Mf2i +1gj
Again, a number of variants is obtained from straightfor-

ward modification. Note that we can initializeM with the
edges of any seed graphG0, and thatk-partite graphs can be
generated in the same way by selecting from different pools.
For directed graphs, the neighbor-selection probability can
be decomposed into the weighted sum of in-, out-, and total
degree. In the implementation, we let a three-sided biased
dice decide which term is relevant and then sample from
odd, even, or all positions inM. If the number of edges to
add for a new vertex is not fixed, the geometric method of
Sec. II, e.g., can be used to sample neighbors from the prefix
of M filled up to now. An example with bipartite preferential
attachment is given in Alg. 6.

ALG. 6: bipartite preferential attachment
Input: number of vertices in each setn

minimum degreedù1
Output: bipartite scale-free multigraphG=sh0, . . . ,n

−1jø̇hn, . . . ,2n−1j ,Ed
M1,M2: arrays of length 2nd

V. BATAGELJ AND U. BRANDES PHYSICAL REVIEW E71, 036113s2005d

036113-4



for v=0, . . . ,n−1 do
for i =0, . . . ,d−1 do

M1f2svd+ idg←v
M2f2svd+ idg←n+v
draw r P h0, . . . ,2svd+ idj uniformly at random
if r eventhen M1f2svd+ id+1g←M2frg
elseM1f2svd+ id+1g←M1frg
draw r P h0, . . . ,2svd+ idj uniformly at random
if r eventhen M2f2svd+ id+1g←M1frg
elseM2f2svd+ id+1g←M2frg

E←0”

for i =0, . . . ,nd−1 do
E←Eø hM1f2ig ,M1f2i +1gjø hM2f2ig ,M2f2i +1gj

ACKNOWLEDGMENT

Research for VB was partially supported by the Ministry
of Education, Science and Sport of Sloveniasproject J1-
8532d. Research for UB was partially supported by Deutsche
Forschungsgemeinschaftsgrant Br 2158/1-2d and the Euro-
pean CommissionsFET open project COSIN, grant IST-
2001-33555d.

f1g D. J. Watts and S. H. Strogatz, NaturesLondond 393, 440
s1998d.

f2g A.-L. Barabási and R. Albert, Science286, 509 s1999d.
f3g K. Mehlhorn and S. Näher,The LEDA Platform of Combina-

torial and Geometric ComputingsCambridge University Press,
Cambridge, 1999d, URL: http://www.mpi-sb.mpg.de/LEDA/.

f4g V. Batagelj and A. Mrvar, inGraph Drawing Software, edited
by M. Jünger and P. MutzelsSpringer, Berlin, 2003d, Math-
ematics and Visualization, pp. 77–103, URL: http://
vlado.fmf.uni-lj.si/pub/networks/progs/random/

f5g E. N. Gilbert, Ann. Math. Stat.30, 1141s1959d.
f6g P. Erdős and A. Rényi, Publ. Math.sDebrecend 6, 290 s1959d.
f7g T. L. Austin, R. E. Fagen, W. E. Penney, and J. Riordan, Ann.

Math. Stat.30, 747 s1959d.
f8g R. Milo, N. Kashtan, S. Itzkovitz, M. E. Newman, and U.

Alon, e-print cond-mat/0312028v1.
f9g C. Fan, M. E. Muller, and I. Rezucha, J. Am. Stat. Assoc.57,

387 s1962d.
f10g J. S. Vitter, ACM Trans. Math. Softw.13, 58 s1987d.
f11g K. A. Nair, ACM Trans. Math. Softw.16, 269 s1990d.
f12g R. A. Fisher and F. Yates,Statistical Tables for Biological,

Agricultural and Medical ResearchsOliver & Boyd,
Edinburgh, 1938d.

f13g M. Faloutsos, P. Faloutsos, and C. Faloutsos, in Proceedings of
SIGCOMM’99 s1999d, pp. 251–262.

f14g B. Bollobás, O. M. Riordan, J. Spencer, and G. Tusnády, Ran-
dom Struct. Algorithms18, 279 s2001d.

f15g Boston University Representative Internet Topology Genera-
tor, URL: http://cs-www.bu.edu/brite/

f16g Georgia Tech Internetwork Topology Models, URL: http://
www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

f17g Java Universal Network/Graph Framework, URL: http://
jung.sourceforge.net/

EFFICIENT GENERATION OF LARGE RANDOM NETWORKS PHYSICAL REVIEW E71, 036113s2005d

036113-5


